High power rechargeable magnesium/iodine battery chemistry
نویسندگان
چکیده
Rechargeable magnesium batteries have attracted considerable attention because of their potential high energy density and low cost. However, their development has been severely hindered because of the lack of appropriate cathode materials. Here we report a rechargeable magnesium/iodine battery, in which the soluble iodine reacts with Mg2+ to form a soluble intermediate and then an insoluble final product magnesium iodide. The liquid-solid two-phase reaction pathway circumvents solid-state Mg2+ diffusion and ensures a large interfacial reaction area, leading to fast reaction kinetics and high reaction reversibility. As a result, the rechargeable magnesium/iodine battery shows a better rate capability (180 mAh g-1 at 0.5 C and 140 mAh g-1 at 1 C) and a higher energy density (∼400 Wh kg-1) than all other reported rechargeable magnesium batteries using intercalation cathodes. This study demonstrates that the liquid-solid two-phase reaction mechanism is promising in addressing the kinetic limitation of rechargeable magnesium batteries.
منابع مشابه
Reversible S0 /MgSx Redox Chemistry in a MgTFSI2 /MgCl2 /DME Electrolyte for Rechargeable Mg/S Batteries.
The redox chemistry of magnesium and its application in rechargeable Mg batteries has received increasing attention owing to the unique benefits of Mg metal electrodes, namely high reversibility without dendrite formation, low reduction potentials, and high specific capacities. The Mg/S couple is of particular interest owing to its high energy density and low cost. Previous reports have confirm...
متن کاملHigh-Voltage Aqueous Magnesium Ion Batteries
Nonaqueous rechargeable magnesium (Mg) batteries suffer from the complicated and moisture-sensitive electrolyte chemistry. Besides electrolytes, the practicality of a Mg battery is also confined by the absence of high-performance electrode materials due to the intrinsically slow Mg2+ diffusion in the solids. In this work, we demonstrated a rechargeable aqueous magnesium ion battery (AMIB) conce...
متن کاملHigh energy density rechargeable magnesium battery using earth-abundant and non-toxic elements
Rechargeable magnesium batteries are poised to be viable candidates for large-scale energy storage devices in smart grid communities and electric vehicles. However, the energy density of previously proposed rechargeable magnesium batteries is low, limited mainly by the cathode materials. Here, we present new design approaches for the cathode in order to realize a high-energy-density rechargeabl...
متن کاملLi-Ion Battery Charger solution using the MSP430
Rechargeable batteries are now widely used as the power supply source in many portable electronic equipments such as Laptops, cell phones and digital cameras. Charging circuits depend on the batterys chemistry and the most popular rechargeable batteries are Nickel-Cadmium (NiCd), Nickel-Metal-Hydride (NiMH), and Lithium-Ion (Li-Ion). This application report discusses the method to charge a Li-I...
متن کاملAqueous Mg-Ion Battery Based on Polyimide Anode and Prussian Blue Cathode
The magnesium-metal battery, which consists of a cathode, a Mg-metal anode, and a nonaqueous electrolyte, is a safer and less expensive alternative to the popular Li-ion battery. However, the performance of Mg batteries is greatly limited by the low electrochemical oxidative stability of nonaqueous electrolytes, the slow Mg diffusion into the cathode, and the irreversibility of Mg striping and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017